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The pitching motion of a circular disk 

By W. D. KIM 
Boeing Scientific Research Laboratories, Seat,t,le, Washington 

(Received 6 Novcmber 1962 and in revised form 39 June 1963) 

The interaction of a pitching circular disk with the motion induced by the disk 
in the surrounding fluid is investigated in this paper. MacCamy’s ( 1961) method of 
simplifying the three-dimensional problem of a circular disk to the two-dimen- 
sional problem is found to apply in the present analysis. The integral equation 
is solved numerically to determine the dependence of pressure, added moment of 
inertia, and damping coefficient on the frequency of the oscillation. 

1. Introduction 
This paper is concerned with the forced pitching motion of a circular disk on 

an inviscid, incompressible fluid. The forced motion is assumed to be simple 
harmonic in time. If the pitching amplitude is small, the amplitude of the result- 
ing waves will also be small in comparison with their length. Therefore the prob- 
lem can be linearized by neglecting higher-order terms in the bounda’ry 
conditions. 

Several authors have considered the problem of forced water waves with 
special cross-section geometry, and a summary of their papers was made by 
Wehausen & Laitone (1960). A method of solving the problem of an oscillating 
obstacle on a free surface by means of surface distributed sources has been given 
by John ( 1  950). Properties of the distributed sources lead one to formulate the 
problem with an integral equation for determining the unknown density. For 
the case of a disk, the kernel of the integral equation does not involve the spatial 
derivatives, and moreover it can be evaluated explicitly. 

For the problem of the circular disk the known boundary value on the immersed 
surface is a simple product of the radial and angular variables. Therefore, follow- 
ing MacCamy’s method, the integral equation can be simplified to contain only 
the radial variable. 

2. General formulation 
Suppose the region ij < 0 is occupied by an inviscid, incompressible fluid. 

Consider a rigid circular disk of radius Z placed on the undisturbed free surface, 
?j = 0, with its centre at  the origin of rectangular co-ordinates Z and Z. The fluid 
motion is created by causing the disk to pitch about the x-axis. It is assumed that 
the forced motion is periodic in time with frequency IT and is of small enough 
amplitude so that small-wave theory can be applied to the resulting motion. 
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If we call the angle which the surface of the disk makes with the Z-axis @(t) ,  
the time-periodic pitch motion can be expressed as 

O(t)  = Re[O,e-i"k], (2.1) 

where 0, is the amplitude of the forced motion. After sufficient time has elapsed 
for the transients to disappear, the fluid motion becomes time-periodic with 
frequency CT. Now, assuming irrotational motion, we introduce the time-periodic 
velocity potential 

(2.2) @(Z, g, 2 ;  t )  = Re [ V(X, g, Z) e--bt]. 

Incompressibility then implies that 

V2V(Z,y,Z) = 0 in j j  < 0. (2.3) 

Pitching of small amplitude will generate waves with amplitudes small in 
comparison with their wavelengths. For a free surface of small slope, the pres- 
sure and the surface elevation are given by 

P(Z, g, x; t )  = - p*gg - P*@$(Z, y, 2 ;  t ) ,  

y(z, z ;  t )  = - q - 1 q ( Z ,  0,z; t ) ,  

(2.4) 

(2.5) - - -  and 

where p* is the density of the fluids, g being the acceleration of gravity. Hence, 
the linearized free surface condition becomes 

OD,,+g@., = 0 (2.6) 

or V G - k V = O  on ? j = O  (2.7) 

outside the disk, where k represents the wave-number which is equal to 
c2/g = %/A, h being the length of free waves. 

On the surface of the disk, the kinematic condition to be satisfied is 

a)- 21 = ZO. (2.8) 

We note here that the immersed surface in motion differs from that in the un- 
disturbed position. However, as a consequence of the linearization, the condition 
(2.8) is to be satisfied on the latter surface, then 

V,  = - ia@,E on the disk. (2.9) 

Finally, at  a large distance from the disk, the propagating disturbance should be 
a radially outgoing regular wave, i.e. 

V(T,  8, y) -f(@ exp [ k y  + iks;] = O(l/r) as r + co, (2.10) 

where f 2  = 1 2 + X 2 ,  and 8 = tan-l(Z/z). 

dimensionless forms 
We transform the space variables and the other relevant variable into the 

x = Z/Z, y = &/a, z =?/a, a = ka, (2.11) 
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where a is the frequency parameter which is equal to cT2a/g = 27rG/h. Then the 
boundary-value problem described by (2.3), (2.7), (2.9) and (2.10) becomes 

(2.12) 

(2.13) 

1 
(A) V 2 u ( x , y , z )  = 0 in y < 0, 

(B) u,-uu = 0 on y = 0, outside the disk, 

(C) u, = x on the disk, 

(D) u(r ,  8, y) - A d  exp [uy + iur] = O( l /r)  

where the pressure function u is related to the potential function V by 

as r --f GO, 

gG@,au(x, y, 2) = iaV(Zx, Zy, Gz) .  

3. Integral representation 
The solution of the boundary-value problem for a pitching circular disk will 

be considered. The problem is to find a function u(r ,  8, y) continuous in the region 
y 6 0 such that 

I (AO) ~ , + r - ~ u , + r - ~ u ~ ~ + u ~ ,  = 0 iii y < 0, 

(BO) u,(r, 8,O) - uu(r,  8,O) = 0 for r > 1, 

(CO) u,(r, 0,O) = rcos 0 for 0 6 r < 1, 

(DO) U ( T ,  0, y) - A d  exp [ay + iur] = O( l l r )  as r + 00. 

With a regularity condition at  the edge of the disk 

lim//cw,dS E - 0  = 0, 

(3.1) 

( 3 . 2 )  

it has been shown by Peters & Stoker (1957) that the solution of the problem is 
unique. Here C, represents a half-tube (r - 1)2 + y2 = 6 ,  y < 0, surrounding the 
edge of the disk and n is the normal to the half-tube C,. 

The potential of a source of unit strength necessary for an integral representa- 
tion of the solution is 

where ,u2 = r2 + p 2  - 2rp cos (0 - $), R2 = ,u2 + y2, and HL1)(up) denotes the Hankel 
function of order zero. Here the potential G satisfies condition (AO) of (3.1) for 
( r ,  0,  y) =t= (p ,  @, 0 )  and condition (DO) of (3.1) for p bounded. Further, 

H,-uH = aR-1; 

hence, G , - ~ G  = aR-yay. (3.4) 

UP, 8, y: f )  = W(r, 8, y: f )  +W, 8, y: f ) ,  (3.5) 

We express the potential due to surface distributed sources of strength f as 

where 

39 Fluid Mech. 17 



610 Cr: D. Kim 

f being a continuous function over 0 < p < 1. Then for any such function f, U 
satisfies conditions (Ao) and (DO) of (3.1). Moreover, from (3.4) we obtain 

u, -aU = w,. (3.6) 

By a theorem of potential theory, 

lim W,(r,O, y : f )  = 0 if r > 1, 
u+o- 

= f ( r , O )  if r < 1.  (3.7) 

U,(r ,8 ,O: f ) -aU(r78 ,0: f )  = f ( r , 8 )  for 0 Q r < 1.  (3.81 

Hence, we find that U satisfies condition (BO) of (3.1). In  addition, (3.6) and (3.7) 
now yield 

Thus, iff is determined from the integral equation 

f ( r ,O)+a[W(r ,B ,O: f )+L(r ,O,O: f )]  = rcosO for 0 < r < 1, (3.9) 

U will also satisfy condition (Go) of (3.1). Accordingly, U is a solution of the given 
boundary-value problem. 

However, the kernel of the integral equation (3.9) is quite complicated. 
The given problem will therefore be transformed into a simpler problem using 
the method developed by MacCaniy (1961). 

Applying the operator [ - (a2/ay2) - aa/ay] to both sides of (3.6) we obtain 

( - & + u 2 ) & ~ = - -  aY2 a 2 ( a  -+a a Y  1 (3.10) 

Since U and W are both harmonic functions of r ,  8 and y in the lower half-space 

(3.11) 
y < 0, we have 

where A = a2/ar2 + r-1 

Suppose U(r ,  0, y: f )  is a solution of the given problem. Since r cos 6' is an 
analytic function in the entire space, then by condition (CO) of (3.1), U may con- 
tinue to be harmonic across the disk into y > 0. It follows then from (3.11) that 
W can also be harmonic across the disk. Thus, U and W are analytic for y Q 0, 
r < 1. In  this case, passing to the limit y = 0 in (3.11), we obtain 

(A + ~ 2 )  r cos 8 = a(a/ay + a )  W(r ,  8,o: f). 

( A + ~ z )  a u l a y  = A(a/ay+a)  w, 
+ r-2 a2/a82. 

(3.12) 

If the inverse of the operator A is applied to both sides of (3.12) we find 

W J r ,  8 , O :  f) + a  W(r,  8 , O :  f) = (1 + a2A-I) r cos 8. (3.13) 

By (3.71, f ( r ,  8)  +a W(r,  8 , O :  f) = h(r,  O ) ,  (3.14) 

where h(r,  0) = r cos 8 + a2w, and Av = r cos 8. Thus, the kernel of the transformed 
problem has indeed a simple form. 

We consider the solution 

of an equation 
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and introduce the sum &(r,  8) = r cos 8 + a2w(r) cos 8. (3.15) 

Further, let the functions f o ( r )  cos 8 and f l ( r )  cos 8 be solutions of the integral 

f3.16) 

Then, it can be shown (see MacCamy 1961) that the sum of two potentials with 
an appropriate constant A, such as 

u[r ,o ,o:  ~ ~ ~ ~ s q + ~ u ~ r , ~ , o :  pcoso] = ~ [ r , e , o : f 0 ~ ~ s e + ~ f l c o s 8 1 ,  

is the solution of the given problem. Now, let us consider how the constant A 
should be determined. From (3.7) and (3.16) we find 

(apy+a) w[r,o,o: f o C c o s e + ~ ~ l c o s o ~  = ~ ( ~ , o ) + ~ r c o s o .  (3.17) 

Hence, from (3.11) we obtain 

(A +a2) aU[r,  8 , O :  ~ O C O S  ~ + A ~ ' c o s  8]/ay = A[E(r, 8) + A ~ C O S  81. (3.18) 

Recalling that A(rcos8)  = 0, and using (3.15), (3.18) can be expressed as 

(A +a2) aU[r, 8 , O :  ~ O C O S  8 +Afl cos 8]/ay = (A + a') Y cos 8. (3.19) 

Thus, it follows that (A + a2) T(r,  0) = 0, (3.20) 

where T ( ~ , O )  = aup,e, 0 : f 0 c o s e + ~ f l ~ ~ ~ 8 1 / a y - ~ c o s 8 .  (3.21) 

Moreover, the solution of (3.20) is given by T ( r ,  8) = aJl(ar) cos 8, J1 being the 
Bessel function of order one. In  order that U satisfy boundary condition (CO) 
of (3.1), the constant A should be chosen to make the coefficient a zero. Since 
J;(o)  = 4 and Jl(0) = 0, the condition 

aT(r,8)/& = 0 at r = 0 (3.22) 

insures that 

Now, from (3.6) and (3.16) we find 

a U[r ,  8 , O :  f 0  cos 8 + Afl COS s]py = r cos 8. 

a q r ,  8 , O :  f 0  cos 8 + Afl cos s1py 
= (a/ay+a) wp,o, o ~ ~ ~ ~ ~ ~ ~ + A ~ ~ ~ ~ ~ ~ ~ + ~ L ~ ~ , ~ , o ~ ~ ~ ~ ~ ~ ~ + A ~ ~ ~ ~ ~ ~ ~  
= ~ ~ r , ~ ~ + ~ r c o s e + ~ ~ ~ ~ , e , o ~ ~ ~ c o s ~ ~ + ~ a ~ ~ r , ~ , o : ~ ~ c o s ~ ~ .  (3.23) 
- 

Here, from the previous definitions, (3.3) and (3.5), we have 

but, as shown in appendix 1, (3.24) can be transformed to 

= Z[r, 0:  f ]  cos 8. (3.25) 
39-2 
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Substituting (3.23) and (3.25) into (3.21) we write 

~ ( r ,  Q) = p ~ ( r )  + AT + azp, 0: + ~ a i [ r ,  0: cos e; 
then by (3.22) the constant A can be determined from the condition 

d 
dr 
-{(a'vJ(r)+Ar+al[r, 0:f0]+Ad[r, O:f1]}cos81,,o 

= (aZ"r, 0: f"Ir=,+A +AaZ"r, 0: f ~ ] l r = o } C O S Q  = 0. 

Hence (3.26) 

Next, we proceed to calculate the derivative of the function I at r = 0. Since 

dJ,(rt)/drl,=, = i t ,  

Further, we find dr [ H : " ( a r ) p ( 4  J,(ap) dP] I r=O = 0, 

su' 

1 

and dr b(ar)Jr lPf (P)  H:l'(W) dP] 1 r=O = pf(p)HP(ap) dp. 

Hence, we obtain the derivative of (3 .25)  

1 " O t  
~ r ,  O : ~ I I , ~  = -+a/opj(p)/o .+t~,(pt)dtdp+iina2 pf(p)H$l)(ap)dp. (3.27) 

Now, by the identity (Grobner & Hofreiter 196l), 

J1(ax) ax = - +nk[X-l(ak) - U 1 ( a k ) ] ,  low & 
(3.27) can be written in the simple form 

l'[r,O:fllr=o = fna2101pf(p)[fl-l(ap) -Y-,(ap)] dp ++ i ra2 I~p f (p )H~ '~(ap)  dp, (3.28) 

where S, and Y-, denote the Struve function and Neumann function of order 
- 1. Lastly, the relations among various functions, 

fL(4 = W(z), Y , ( z )  = - Y,(z), 
and 

where W, is the Weber function of order 1, permit us to write 
H:l'(x) = J,(z) + i q ( z ) ,  
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Thus, we have reduced the solution of the given boundary-value problem to 
the solution of (3.16). With known values of f 0  and fl, the constant A can be 
evaluated by (3.30). Finally, we obtain the solution in the form 

u ( ~ , O , y )  = U[r ,8 ,y :  f(r,8)] = U(r ,8 , y : focos8+Af1cos8 ) .  (3.31) 

4. Added moment of inertia and damping coefficient 
We relate the moment acting on the pitching disk to the quantities called the 

added moment of inertia and damping coefficient. Then we shall consider the 
limiting values of these quantities when the frequency parameter a tends to zero. 

The moment acting on the disk due to the dynamic fluid pressure is given by 

G ( t )  = I/& - p*Qt) x cos (n, jj) dS. 

For small oscillatory motions, the linearization (see John 1950) yields the first- 
order moment as 

where S represents the immersed surface of the disk in motion, while So denotes 
that in the undisturbed position. From (2.2) and (2.13) we then have 

Since the angular velocity and the angular acceleration of the pitching motion 
are given by . .. 

0 = Re [ - id3,eiUL], 

if we express the first-order moment as 

0 = Re [ - &%Oe-iut], 

Gl( t )  = -&&j-i&&, (4.3) 

we obtain 

and 

(4.4) 

(4.5) 

Here f and a are called the added moment of inertia and the damping coefficient, 
respectively. Hence, in terms of polar co-ordinates we have 

where we find from (3.8) that the pressure function a u  is related to the density 
f ( r ,  0) of the distributed sources by 

au(r,  8,O) = r cos 8 -f(r,  8) 

= rcosO-Re[f(r,@] -iIm[f(r,O)]. (4.8) 
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When y = 0, by the identity (Grobner & Hofreiter 1961) 

/ome-"n(p2+ 721-4 dy = +n[X0(ap) - yO(ap)l, 

the potential of a source of unit strength (3.3) can be evaluated explicitly as 

G(r,p, 8, $: a) = kb-l- &ra[Y,(ap) + Xo(ap) - i2Jo(ap)]. (4.9) 

The functions appearing in (4.9) have expansions of the following form 

2 "  m 

Jo(ap) = A , ( , U ) ~ ~ ~ ,  Xo(ap) = - B,(,u)a2m+1, 

Yo(a,u) = - log a S A,&) a2m + 3 C,(p) a2m , 

m=O nm=o 

I W m 

n '[ m=O m=O 
and 

where A0 = 1, A1 = - , ~ ~ / 2 ~ ,  ..., Bo = p, Bl = -p3/1.3, ..., 

c, = y+log&, c, = -(y+log+p-1)p2/22, .... 
Rearranging power series of parameter a we obtain 

m m 

n=O n=O 
aG(r,p,8,$: a) = C P,an+l+ 2 Qnan+210ga, (4.10) 

where Po= l/p, P,=in-y-log&!&, Pz= - p  )...) 

Qo = - 1, Q1 = 0, Q, = p2/22, .... 
We shall, therefore, develop the asymptotic solution of the integral equation 
(3.9) which depends upon parameter a in the form 

m m  

f ( r ,  8) N C fijai(aloga)j. (4.11) 
i=oj=o  

As shown in appendix 2, it turns out that 

f ( r 7  8:  a) - fo0 + afl0 + a(a log a)fll + a2fi0 + a2(a log a)fil + a3f30, (4.12) 
where 

fll = 0, 

and 



The pitching motion of a circular disk 615 

Substituting the solution (4.12) in (4.6) and (4.7) we obtain the following first 
non-vanishing terms, 

(4.13) 

and H ( 0 )  = -:Io I0 [Io so Qpc~~+dppd$]rcos8drrd0  = O(a2), (4.14) 
2n 1 2n 1 1  

where p2 = r2 +p2 - 2rp cos (8 - +). Note that as the parameter a tends to zero, 
the normalized damping coefficients H vanishes while the normalized added 
moment of inertia I approaches a non-zero constant. 

5. Numerical procedure 
We present here a numerical method for finding the approximate value of the 

unknown function f j ( r ,  0) =fj(r)cosO,  j = 0,1, in the integral equation (3.16). 
Presently, a scheme of evaluating the limiting value of the normalized added 
moment of inertia will also be shown. 

Let us begin by writing (3.16) as 

f j ( r )  cos 8 + aW[r ,  8 , O ;  f j ( r )  cos 81 = g j ( r )  cos 8 (0 < r < l ) ,  (5.1) 

where the integral W is given by 

(5.2) 

p2 = r2 + p2 - Zrp cos (8 - +) . 
First, setting a = r2 +p2, p = Zrp, and $ - 8 = y ,  we evaluate the $-integration in 

Then by (A 1.3) in appendix 1, we find 

(5.3) 

where k denotes the modulus of Jacobian elliptic functions given by 

k2 = 4rp/(p + r)2. 

Substitution of (5 .3)  into (5.1) yields the integral equation relating boundary 
values only on the radius of the disk, 

We observe that the integral term will vanish for r = 0, hencefj(0) = gj(O), and 
forp = 0 the integrand becomes zero. Further, at  p = r ,  the kernel of this equation 
is logarithmically singular since 

K ( k )  - ln- 
(1  - k2)h 

(5.5) 
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Let us introduce a regular function R by 

then (5.4) may be written as 

(5 .0 )  

x ($g [Ill ( p  + r )  + R(k)l-  (p+r )  E(k)  dp = qj(r). 1 (5.7) 

Here our procedure is to divide the interval ( 0 , l )  of the first integral of (5.7) 
into the subregion about the point of discontinuity ( r  - h, r + h) ,  and for the 
remaining region we write 

(5.8) 

Now we make use of the following approximate quadrature formula for r + 1 
which would give exact results if F(p )  were polynomials of degree less than or 
equal to three, i.e. 

and for r = 1 a similar quadrature formula 

ri 

For example, in the case of r += 1, we find the approximation of the integral over 
the subregion as 

. (5.9) 
27-2 + h( 2r + h) +-- 

r( 2r + h) 

Then the substitution of (5.8) and (5.9) in (5.7) yields 

(5.10) = gqr)  (0 < r < 1). 
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We remark here that within the subregion, the coefficient of the logarithmic tern1 
is assumed to be a polynomial of degree equal to or less than three. This permits 
the use of a larger interval size than would be possible if the coefficient were 
assumed to be constant within the subregion (as is often done). In  (5.10), the 
remaining integrals are readily approximated by application of Simpson's and 
the trapezoidal rules. Further, we observe that the unknown function f j ( r )  is 
a complex function. However, the kernel of the integral equation is real, and the 
imaginary part of the given function Im [gj(r)] is zero, hence we haveIm [ f j ( r ) ]  = 0. 
Here, the real parts of gj(r) are given by Re [go(r)] = r + 4a2r3 and Re [gl(r)] = r ,  
respectively. 

From (4.13) and (5.3), as the parameter a tends to zero, we have 

(5.11) 

Note that for r = 0 the integral becomes zero, and for p = 0 the integrand of 
(5.11) vanishes. Now, by use of the regular function R, (5.11) may be expressed 
in the form 

E(k)dp  dr. (5.12) I 
The limiting value of I can th.erefore be evaluated in a manner quite similar to 
that used for evaluating the integral term in (5.4). 

Next, let us examine the behaviour of the integrand of (3.30) as p approaches 
zero. It can be shown that 

2 
lim [pW1(ap)] = 0, lim [pY,(ap)] = - , and lim [pJ,(ap)] = 0. 
P-0 P+O na P+O 

Since f j ( 0 )  = gj(0) = 0,  the entire integrand vanishes when p = 0, i.e. 

lim {P fJ lP)  [W,(ap) - Y1(a.P) + i2J1(ap)Il = 0. 
P+O 

Furthermore, we observe that as the argument ap becomes large, 

W,(w) = -T(.P)7 
hence 

= i2 (2/nap)t  ei(ap-b).  (5.13) 

Therefore, this term in the integrand of (3.30) fluctuates as the parameter a 
increases. This implies that it is necessary to take a finer interval for large value 
of a in order to obtain the same accuracy in the numerical results. 
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Let us designate the real and imaginary parts of the denominator of (3.30) by 

(Re D) (Tm N) - (Im D) (Re N) - 

(Re N)2 + (Im N)2 

Re D and Im D, and those of the numerator by Re N and Im N, then we have 

and ImA = - ~ ~ _ _ _ _ _ -  
(Re D) (Re N) + (Im D) (Im N) 

(ReN)2+ (ImN)2 
ReA = ~ . ~ _ _  ~ 

(5.14) 

The computational procedure is to divide the interval of integration (0, 1) 
into as many equal parts as practical. Then, at each grid point the integral terms 
in (5.10) will be evaluated by Simpson's rule to form an approximate system of 
linear equations relating the values of fj(r) at selected grid points. Solving the 
linear equations, we can determine the unknownfJ(r). Then we proceed to evalu- 
ate the real and imaginary parts of the coefficient A by (5.14) using Simpson's 
rule. Thus, the solution of the integral equation 

jp-, e)  = [ p ( T )  + 4 y r ) l  cos e 
= [ f0(r )  + (ReA)fl(r)] cos 6 + i(1m A)f l ( r )  cos 0 

= Re [f(r, @I + iIm [f(r, 011 (5.15) 

can be determined approximately. Now, with the values of the real and imagin- 
ary parts of f(r, e) at hand, we can evaluate the dynamic pressure at  the grid 
points by use of (4.8)' 

po = au(r, 8,O) = [r- fo(r)  - (Re A)fl(r)] cos 8 - i(Im A)fl(r) cos 8 
= Repo+iImp* (5.16) 

and its intensity by /pol = [(Repo)2 + (Imp0)2]&. (5.17) 

In  addition, the phase lag of the pressure is 

E = tan-l [Im po/Re pol. (5.18) 

It follows, then, from (4.6) and (4.7) that the normalized added moment of 
inertia and damping coefficient can be evaluated from 

I = - r2 [r - fo(r)  - (Re A ) f l ( r ) ]  dr, (6.19) : so' 
H = - - r2 (ImA)fl(r) dr. (5.30) : s,: 

6.  Results 
A numerical method of solving the integral equation (3.9) of two variables was 

considered in an earlier paper (Kim 1962). Using the numerical solution of (3.9), 
the normalized added moment of inertia I, and the normalized damping coeffici- 
ent H of a pitching circular disk were evaluated as a function of the frequency 
parameter a = v2Z/g. The numerical scheme was based on establishing a suitable 
latticeon the circular disk (and the elliptic disk) lying on the (2, 2)-plane for the 
finite difference representation of the integral equation. The x-axis of the disk was 
divided into sixteen equal intervals h, while the ordinates parallel to the z-axis 
were divided into eight equal intervals k(x); thus each point on the lattice has 
the co-ordinates 

I (6.1) 
x i = ( i - 8 ) h  ( i = O , 1 ,  ..., 16,whereh=i ) ,  

zl(x,) = (j-4)Ic(xi) ( j  = 0,1, ..., 8,  wherek(x,) = i(l-x:)&).j 
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Eighty-two linear equations were required to relate thevalues of Re [ f ( ~ ,  z ) ]  and 
Im [f(x, z ) ]  in (3.9) at forty-one pivotal points (located in one quadrant of the 
lattice). For reasonably large values of a, however, the function G given by 
(3.3) is approximated by 

G(x,  0, z, c, 0, c) N ++ i(2nujr)h ei@'-i@, (6.2) 

where r2 = ( ~ - 6 ) ~  + ( z -  c!J~, and the quadrature of such an oscillatory function 
requires a quite small finite-difference interval. If the original intervals (6.1) 
be bisected, there results 290 equations for 145 pivotal points. 

The present study was undertaken chiefly to avoid the need for handling such 
a large number of linear equations in order to obtain accurate numerical results 
up to u z 4.0, which covers the physically significant range of the frequency 
parameter. Furthermore, the new results may be used to ascertain the validity 
of the numerical scheme adopted previously for obtaining the solution of (3.9). 

Here we begin by dividing the radius of the disk into thirty-two equal parts 
so that four times as many intervals as in the case of two variables are obtained 
on the radius. The integral equations (3.16) are then replaced by two finite sets 
of linear equations relating the unknowns f 0  andfl at  each pivotal point. After 
the numerical solutions of these linear equations have been found by the elimina- 
tion process based on the algorithm of Gauss, the real and imaginary parts of the 
constantA can be evaluatedusing (3.30) and (5.14). The term (5.13)in theintegrand 
of (3.30), however, possesses an oscillatory tendency as the parameter a increases. 
Nevertheless, in thepresentmethodafinite-differenceinterval can readily be made 
smaller without excessively increasing the number of linear equations because the 
quadrature depends upon only one variable. The alternative method of finding 
the solution of the integral equations (3.16) would be to use the iteration process 
suitable for the equation with logarithmic kernel described by Wagner (1951). 

The computation is performed for ten values of a, i.e. &n, in, &IT, in, &i-, &IT, 

in, +n, IT, and in. By the definition of the frequency parameter, the minimum 
and maximum values of a correspond to the cases in which the length of the wave 
generated by the forced pitching of the disk is equal to 12 to 0.8 times the dia- 
meter, respectively. Using computed values of the source density along the 
radius of the disk we can evaluate I and H by (5.19) and (5.20) 

We remark here that the accuracy of the computation can be checked by 
evaluating H by a formula (A3.13) in appendix 3. For the evaluation of H by 
(5.20) only the imaginary part of the pressure acting on the surface of the disk 
is necessary. However, in the formula (A 3.13), in order to consider the energy of 
radiating waves at  large distances, we require both real and imaginary parts of 
the pressure. In  table 1, the values of H evaluated by these two methods are 
presented. The comparison of results indicates the good accuracy of the present 
computation. 

In  figures 1 and 2,  the dependence of the normalized added moment of inertia 
and normalized damping coefficient on the frequency parameter are presented. 
The solid lines represent the results computed by the present method, and the 
circles indicate the results obtained by the previous method (the method using 
(3.9)). The values of 1 obtained by the previous method are somewhat lower 
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H evaluated H evaluated 
a by (5.20) by (A3.13) 

0.0023 
0.0138 
0.02 10 
0.033 
0.054 
0.068 
0.083 
0.096 
0.097 
0.093 

0.0023 
0.0138 
0.0210 
0.033 
0.054 
0.068 
0.083 
0.096 
0.098 
0-095 

TABLE 1 

a = ti(a”g) 

FIGURE 1. The dependence of the normalized moment of inertia 
on the frequency parameter. 

FIGURE 2. The dependence of the normalized damping coefficient 
on the frequency parameter. 
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throughout the range of the computation, while the values of H obtained by the 
previous method are in good agreement with the present results up to a M 1.0, 
and then tend to lower values. These facts indicate that to improve the accuracy 
of the results in the method using (3.9) finer finite-difference intervals must be 
taken. 

The limiting value of the normalized added moment of inertia, as a tends to 
zero (computed by (5 .12)) ,  is I (0)  = 0.266. 

Next, we present the strip-method evaluation for the circular disk problem by 
making use of the data from MacCamy’s unpublished note, ‘The rolling motion 
of strip’. Let us denote the dynamic pressures of the two-dimensional raft 
problem and the three-dimensional circular disk problem for a given value of the 
parameter a by 

7r2(a) = -p* 0, t ;  a)/at and 7r3(a) = -p* a03(Z, O,X ,  t ;  a)/% 

The half-width of a circular disk of radius la at distance X from the centre is 
w(Z) = (a2 - s2)*, hence we have 

kw(Z) = @/a) ( a 2 - X 2 ) *  = a(l-Z2/%2)>:. (6 .3 )  

Over the strip w(X) dz, if the pressure 7r3(a) is approximated by r2{a( 1 - z2/a2)&}, 
the approximate moment acting on the pitching disk of small draft is given by 

- 7T2{a( 1 -.”la”>:) led%& 
- 4sasu’( i ’  0 0  

For the raft problem, the moment is related to the two-dimensional normalized 
added moment of inertia and norma.lized damping coefficient by 

2 7 r 2 ( a . * ) ~ d ~  = - [p*131~(a*)] I S -  [ p * 1 3 ~ ~ , ( . * ) ]  18, (6 .5 )  sd 
where kl = a*. Hence, by (6 .3 ) ,  the relation (6 .5)  can be applied to (6 .4)  to yield 

(6 .6 )  

Then, by (4 .3 ) ,  (1 .6)  and (1 .7 ) ,  we may equate the approximate moment to the 
three-dimensional normalized added moment of inertia and normalized damping 
coefficient for the circular disk problem as 

G* = - [p*a413(a)] ad - [p*Z4aH3(a)] Z 8 .  (6 .7)  

From (6 .6 )  and (6 .7)  we obtain 

and 

13(a) = 2 [’ ( 1  - z2)2 12(a( 1 - 2 2 ) : )  dz 
J O  

H3(a) = 2 ( 1  - z”,”H2{a( 1 - ” ) & )  dz, So1 
where z represents Z/E. 
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The computed values of I3 and H3 using MacCamy’s data (I, and H,) are com- 
pared with the present results in table 2. It can be seen that the strip-method 
evaluation gives higher values than the more accurate present method through- 
out the range of the computation. 

a I I3 H H3 

+7 0.281 0.308 0.083 0.129 

477 0.288 0.368 0.0138 0.0534 
f n  0.298 0.349 0,054 0.107 

877 0.260 0.281 0.096 0.126 
77 0.227 0.245 0.099 0.116 

TABLE 2 

0.9 

0-6 

lPO1 

0.3 

0 
0 0.25 0.50 0.75 1 -00 

z/a 
FIGURE 3. The pressure intensity along the axis perpendicular 

to the axis of rotation. 

0 0-25 0.50 0.75 1 a 0 0  
?/a 

FIGURE 4. The phase lag of pressure along the axis perpendicular 
to  the axis of rotation. 
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The pressure distribution and the phase lag of the pressure for values of 
a = Qn, in-, 4n-, $n- and n- along the positive x-axis (perpendicular to the axis of 
rotation of the disk) are shown in figures 3 and 4, respectively. The pressure along 
the axis of rotation is zero, and it reaches a maximum at about eight-tenthsradius. 
A t  the edge on the x-axis, the pressure has a finite value so that it will create a 
wave disturbance there. The pressure intensity increases as the frequency in- 
creases. It should be noted that the pressure distribution in the angular direction, 
as has been assumed in the analysis, depends only on cos 8. 

For a sufficiently large value of a, however, Holford found that the pressure 
along the x-axis is given by 

p( r )  z (4a/3n)r( l -r2)4 ( 0  < r < 1). (6.10) 

It follows then that the maximum pressure will occur at 1/42 radius, and at the 
edge it will vanish. 

In figure 4, a sharp rise in the phase lag can be noted between the three- 
quarter radius and the full radius. The slope of this rise increases with increasing 
values of the frequency. 

The author expresses thanks to Prof. R. C. MacCamy, who suggested the prob- 
lem and gave valuable advice concerning it; and to Dr T. E. Turner, who has 
supervised the research. The author is also indebted to Prof. T. Nishiyama, to 
Dr J. F. Price and to Dr M. Graham for valuable discussions. 

Appendix 1 
The integral L ( r ,  8, y: f )  is defined as 

hence, for y = 0, and f ( r ,  8)  = f ( r )  cos 8, we have 

L [ r ,  0,O: f ( r )  cos 81 

Now, recalling that p is given by ,d = r2+p2 - 3r p cos (8 - $), if we set 

r 2 + p 2 + v 2  = a, 2rp = p ,  and $4 = y ,  

= / o m e - q y c o s  ( y  +8)  [a -pcos 71-4 dydr 

( A  1.2)  
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Here, replacing y by n- - S, we find 

Jloncosy,a-pcos y]-&dy = - /nocos(n-S) [a-pcOs(IT-S)]-*ds 

= -Jloneos~[a+pcosS]-ids 

= ; /o=[ j r+pcosS]-~dS- - [ a+pcosS]~ds .  ;/: 
From the identities in Byrd & Friedman (1954) 

/ ~ [a+peoso ] - *dB  = 2(a+p)-+F(+fp,  k) 

and 

we have 

= 2p-ya +p)-& [ah'@) - (a+P) E(k) ] ,  (A 1.3) 

where k denotes the modulus of Jacobian elliptic functions, and k2 = 2p/(a+P). 
In particular, when 9 = in-, the integrals F(Q7r, k) = K(k)  and E(&r, k) = E ( k )  
are the complete elliptic integral of the first and second kind, respectively. 

Further, from the identity (Byrd & Friedman 1954), 

we find 

= (2/7$) (a+P)-:[aK(lc)-(a+p)E(k)]. 

It follows then from (A 1.3) that 

and the substitution of (A 1.4) in (A 1.2) yields 

(A 1.5) 
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Now, by (A 1.5), (A 1.3) can be expressed as 

It can be shown (Morse & Feshbach 1953) that H~’’(U,LL) has the expansions 

W 

H&lI(a,u) = Jo(ar) Hf’(up) + 2 c J,(ar)H‘,l’(up) cosn(8- $), for p > r ,  
n=l 

m 

Hence, we find 

/02jl(ll(u,u) cos = o + 2n- cos ~ J , ( u r )  H:l)(ap) + ~ ( c o s  20) ( p  > r )  

= O+2~cos8Jl(up)H~1’(ur)+O(cos28)  ( p  < r ) .  

(A 1.7) 
Finally, from (A 1.6) and (A 1.7), we obtain 

= Z ( f )  cos 8. (A 1.8) 

Appendix 2 

equation 
For small values of the parameter a. we develop the solution of the integral 

02 W (A 2.3) 
where aG(r,p, 8, $: U )  = 2 p,an+l+ c &nan+210gu* 

n= 1 n=l 

From inspection of (A 2.3) we shall consider the asymptotic expansion 

where the power products ui(ulogu)j can always be ordered as to their rate of 
vanishing as the parameter u tends to zero, viz. 

(A 2.4) 

40 Fluid Mech. 17 
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if i' +j' > i +j, or i' +j' = i +j a n d j  > j'. Now, the integral term in (A 3.3) can 
be written in power series as 

2 2 [p, fiian+i+j+l (1 0 g a ) j +Qnfijaa+i+j+2 (1 0 g a 1 f + l  IdPPdl l .  

Here indices are related as 

n + i + j + l  = Z+m and j = m, 

n + i + j + 2  = Z+m and j+ 1 = m, 

and therefore we find that in both cases n = 1 - i - 1, and 
1-1 I-1 

i=O i=O 
El, = S P l - i - l f i r n  + C Qz-i-lfi,m-l* 

(A 2 .5 )  

(A 2.6) 

Suppose the known function h* has an expansion 

h*(r,8) = s h&, 
z=o 

then we may express (A 2.1) in the form 
m m  m c c fz, al+"(log a)" + E , n ~ ~ z + m ( l o g a ) m d p p d ~  = c hid. (A 2.7) 

Z=O m=O z=o 

Prom (A 3.7) we find if m = 0 

a n d i f m +  0 

(A 2.8) 

We observe that (A 2.8) and (A 2.9) are recurrence formulas by which the co- 
efficients fij can be determined successively. For example, we obtain the first 
few terms from (A3.8): 

(A3.10) 

and, from (A 2.9), f, = 0 for all m, (A3.11) 

and 

I (A3.12) f 1 Z  = 0,  
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This process ultimately leads to (A 2.3). We say f ( r ,  0: a )  has an estimate of 
degree ( i , , j )  if 

f ( r ,  8: a) = P(a,aloga)+O[ai(aloga)j], (A 8.13) 

where P is a polynomial of degree (Qj). From (A 2.2) we find 

aG = -a210ga+O(a210ga); 

hence, the product of a G  with a polynomial of degree ( i , j )  is a polynomial of 
degree (i + 1 , j + 1) in addition to terms of O[ai+l(a log a)j+l]. 

Suppose that by computing fno, fin, ...,fin, we have shown f ( r ,  0: a)  to have an 
estimate of degree (Z,m). Substituting this estimate in the integral term in 
(A 2.7) we obtain a polynominal of degree (1 + 1, m + 1) plus terms of 

O[aEfl(a logaj”+‘]. 

The right-hand side of (A2.7) has the estimate of degree (I, 0 )  for all I, hence 
(A 2.7) yields forf(r,O: a) an estimate of degree (I+ 1,m+ 1) .  

Now, retaining the terms with h, = r cos 8 in the coefficients f i i  we may write 
the asymptotic solution as 

f(r, 8 :  a )  - foo+aflo+a(aloga) fll+a”fi,+u2(aloga)f21+a3f30. (A2.14) 

Appendix 3 
Here we present another method for evaluating the damping coefficient of a 

pitching circular disk based on a consideration of the energy associated with 
radiating waves. Substitution of (C) of (2.12) into (4.5) yields 

(A 3.1) 

Note here that, since uy is real, we have uuy = uZy = uU,. The normalized damp- 
ing coefficient is therefore given by 

(A 3.2) 

Let us consider a region D lying inside a vertical half cylinder which is bounded 
by a cylindrical wall C, the disk So, and a portion of the free surface S,. Since the 
function u is harmonic in D, then in applying Green’s theorem we observe that 

From the free-surface condition (BO) of (3.1), we have 

(A 3.4) - - __ 
u, = u, = au. 

Hence uU, = aIu12 is real, and (A 3.3) reduces to 

(A 3.5) 

40-2 
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Thus, if r denotes the radius of C we can express (A 3.2) in terms of the energy 
of radiating waves as 

(A 3.6) 

For a mode of pitch, the potential of radiating waves a t  large distances takes 
the form 

u N F cos 8 r-4 eay+iur. 

- 
Hence, ur N - ia,j7 cos Or-& eay--iar. 

Substituting (A 3.7) and (A3.8) into (A 3.6), we find 

2n 0 
IF l 2  cos2 O e 2 a ” d y d 0  = +n[FI2. 

= L 
On the other hand, from (3.3) we have 

G N i naeauHbl ) (a ,u )  as r + 00. 

Therefore the direct evaluation of the potential yields 

where Hhl)(ar) N - (1 + i )  ( a m - $  as r + 03. 

Now, comparing (A3.7) and (A 3.11) we find that 

JO 

where f is a complex function. 
Finally substituting (A3.13) into (A3.9) we obtain 

(A 3.7) 

(A 3.S) 

(A 3.9) 

(A 3.10) 

(A3.11) 

(A 3.1 2) 

(A 3.13) 

where Re[f(r)] = [ fo(r)  + (ReA)fl(r)], and Im [f(r)] = [(ImA)fl(r)]. With the 
solution (5.15) of the integral equation, the normalized damping coefficient can 
also be evaluated by (A 3.13). 
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